Welcome to the official website of PTING! www.zjpainting.com

News

Let the value be shared
Record the pace of enterprise development

NEWS

NEWS CENTER

CONTACT

Contact

Headquarters switchboard hotline:0574-86168681

Global Investment Promotion Line:135-8686-7057

Email:info@pting-tech.com

Headquarter:No. 2, Jinhai North 3rd Road, Cixi Binhai Economic Development Zone, Ningbo City, Zhejiang Province

Beilun R&D Base:No. 21, Jiangjia'ao Industrial Zone, Xiaogang Street, Beilun District, Ningbo City, Zhejiang Province

Details

The second phase shot peening intensity curve

Classification:Process technology Release time:2021.09.24 News source:Web  Visits:1339

Currently, two parameters are used to characterize the effect of shot peening: coverage and shot peening intensity. Coverage is a visual two-dimensional parameter, it is easy to define (the area of ​​the pit is the percentage of the total area), and it can be tested directly. The shot peening strength is an invisible three-dimensional parameter, which is difficult to define and can only be tested indirectly.

    The indirect test method for shot peening strength is Almen test pieces are shot peened in different cycles (time, number of passes or speed), and then drawn by saturation curve. When one side of the Almen test piece is shot peened, it will be bent and deformed protruding to the surface to be sprayed, and the arc height h of the bending deformation can be tested by the Almen tester. Different shot peening time t obtains different arc height values, and the shot peening intensity curve (usually called "saturation curve") can be drawn. "Saturation intensity" is a special arc height value on the saturation curve, that is, when the time is doubled, the arc height value increases by 10%, as shown in Figure 1. Saturation intensity is used to quantify the difference between different saturation curves, and it has become an industry quantitative method used to measure the energy intensity of shot peening beams.


 

图1 喷丸强度曲线(“饱和曲线”)

    每一个丸粒撞击所产生的凹痕均会在平行于试片表面方向上产生一定的塑性延伸变形。该塑性延伸变形可以导致阿尔门试片发生δh的弯曲变形。该塑性变形是延伸变形,因此阿尔门试片发生了凸向被喷面的弯曲变形。从这一方面来讲,对阿尔门试片的喷丸和喷丸成形非常相似。


测具测试

    每一个测试得到的弧高值h均是大量的个体的δh累计而得到的,这和雨量器有相似的特征。图2显示了雨量器的测试方法。经过一段时间t的收集,雨水的高度为h,每一个雨滴对高度的贡献为δh。雨水的高度同样受到雨滴进入雨量器的速度的影响。因此可得以下公式:

           h=r.δh.t                         (1)

    如果r和δh为已知常量,那么式(1)可以写成:

                                         h=a.t                            (2)

    其中a是常数。(a= r.δh) 

    公式(2)是一个直线方程。直线方程可以通过测试不同时间t的高度h而获得,如图2所示。该测试具有统计变化性,因此仅能作为已知公式的参考。在1805年,勒让德发明了“最小二乘法”,可以对现有数据进行最佳拟合,使其符合现有的公式。到了计算机时代,工程师们厌倦了采用手动的方法对试验结果进行最佳拟合。


 

图1 喷丸强度曲线(“饱和曲线”)

    每一个丸粒撞击所产生的凹痕均会在平行于试片表面方向上产生一定的塑性延伸变形。该塑性延伸变形可以导致阿尔门试片发生δh的弯曲变形。该塑性变形是延伸变形,因此阿尔门试片发生了凸向被喷面的弯曲变形。从这一方面来讲,对阿尔门试片的喷丸和喷丸成形非常相似。


测具测试

    每一个测试得到的弧高值h均是大量的个体的δh累计而得到的,这和雨量器有相似的特征。图2显示了雨量器的测试方法。经过一段时间t的收集,雨水的高度为h,每一个雨滴对高度的贡献为δh。雨水的高度同样受到雨滴进入雨量器的速度的影响。因此可得以下公式:

           h=r.δh.t                         (1)

    如果r和δh为已知常量,那么式(1)可以写成:

                                         h=a.t                            (2)

    其中a是常数。(a= r.δh) 

    公式(2)是一个直线方程。直线方程可以通过测试不同时间t的高度h而获得,如图2所示。该测试具有统计变化性,因此仅能作为已知公式的参考。在1805年,勒让德发明了“最小二乘法”,可以对现有数据进行最佳拟合,使其符合现有的公式。到了计算机时代,工程师们厌倦了采用手动的方法对试验结果进行最佳拟合。


WeChat

Telephone

QQ

Quote

Manager Zhang

Manager Qiu

0574-86168681